Stabilization of fast pyrolysis liquids from biomass by catalytic hydrotreatment using Raney nickel “type” catalysts
نویسندگان
چکیده
منابع مشابه
Raney-nickel Catalysts Produced by Mechanical Alloying
Raney catalysts were prepared by a combination of mechanical alloying and leaching as an alternative in the synthesis of Raney-Nickel catalysts. Binary Al-Ni and ternary Al-Ni-Fe alloys with nominal compositions Al65Ni35, Al75Ni25, Al65Ni30Fe5, Al75Ni20Fe5 (in atomic percent), were processed from pure elemental powders; they consisted mainly of the intermetallic B2 AlNi phase. Aluminum was sele...
متن کاملKinetics of biomass catalytic pyrolysis.
The Coats-Redfern method was used to analyze the kinetic characteristics of biomass catalytic pyrolysis, indicating that it can be described by multi-step reactions, rather than as a simple first-order reaction. Friedman model-free calculations were used to describe the starting reaction types and the corresponding initial kinetic parameters. Finally, nonlinear regression of biomass catalytic p...
متن کاملPhenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis.
Catalytic microwave pyrolysis of biomass using activated carbon was investigated to determine the effects of pyrolytic conditions on the yields of phenol and phenolics. The high concentrations of phenol (38.9%) and phenolics (66.9%) were obtained at the temperature of 589 K, catalyst-to-biomass ratio of 3:1 and retention time of 8 min. The increase of phenol and its derivatives compared to pyro...
متن کاملPolymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions.
Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct...
متن کاملCatalytic Pyrolysis of Tar Model Compound with Various Bio-Char Catalysts to Recycle Char from Biomass Pyrolysis
Tar and char can be regarded as unwanted byproducts during the gasification process. In this study, three types of catalyst, i.e., biomass char (bio-char), nickel supported on biomass (Ni+bio-char), and nickel supported on bio-char (bio-char+Ni), were studied to compare the catalytic effects of different preparation methods on tar model compound removal. The structural characteristics of the th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fuel Processing Technology
سال: 2021
ISSN: 0378-3820
DOI: 10.1016/j.fuproc.2021.106846